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The present work deals with the original research on

the use of nonlinear vibration technique to solve for the

hypervelocity ballistic limit for double plates. Such

structure is commonly found in typical space station design

where the incoming space or man-made debris would be

fragmented upon hitting the outer plate (shield) and the

subsequent impact on the main wall would result in a much

reduced damage of the space station or spacecraft. The

existing few theoretical impact equations do not agree well

with each other (Christiansen 1989). The existing computer

code "bumper" used at NASA-Johnson Space Center appears to

predict unconservative ballistic limit when compared with

experimental data where the velocity ranges from 3 km/s to 8

km/s. Such unconservative prediction is unacceptable from a

practical safe design point of view. The "bumper" code is

based on Wilkinson's (1968) paper and his equations have not

been improved nor modified even though they are viewed with

suspicion due to lack of agreement with experiments. To

make matters worse, there is not other theory which is

better than Wilkinson,s equation and the designers are

forced to use purely empirical Nysmith (1969) or semi-

empirical equations developed by Cour-Palais in 1969. The

Cour-Palais equations were later modified empirically in

1989. Since the actual velocity of a space debris ranges

from I0 km/s to 60 km/s and the highest experimental

projectile velocity is 8 km/s (at NASA-Marshall), one is

compelled to use extrapolation of existing experimental

results. It is well known that extrapolation (rather than

interpolation) could easily give grossly erraneous data.

Since Wilkinson's equation is a purely theoretical equation

based on the energy-balance mechanics concept, the

extrapolation error is avoided, and when it is properly

modified, it may be the only valid equation in the extremely

high velocity range near 50 km/s. The purpose of the

present investigation is to examine the many assumptions of

Wilkinson,s equation and it appears that some of the

assumptions were grossly inaccurate. An attempt is made to

present design charts based on the modified-Wilkinson

equation so that the designer can get a "feel" of the ranges

of the parameters which are of interest and "discard" a huge

range of parameters, thus, significantly reducing the number

of test shots required. Further discussions on the

theoretical and experimental work can be found in recent

memos (Abbott 1990 and Olsen 1990). The nonlinear modal

analysis was discussed by the author (Hui 1990).

The analysis is based on a solution of the governing

nonlinear differential equations for a plate, assuming axi-
symmetric behavior using polar coordinate

DVzV2W + (_)(h) W,_- (l/r) (F,F W,_),F = 0

V2V2F = (-Eh/T) W,F W,Tr
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where D is the flexural rigidity, E is Young's modulus, W is
the out-of-plane deflection, F is the stress function, h is
thickness of the main wall, C is the density of the plate,
is the radial coordinate and V2 is the differential Lagrange
operator. The assumed deflection mode is:

2
w(r) = A(t) e-r, w = W/h, _ = (r)(2) I/2

and this mode is more realistic than that employed by

Wilkinson since it accounts for the extent of spread of the

debris and it is generally accepted that the shape of the

impulse should closely resemble the deflection shape at

least in the very early initial response. The stress

function is solved exactly (it is exact relative to the

assumed deflection) and the nonlinear equilibrium is solved

approximately using a Galerkin procedure. This method would

predict upper bound frequencies and thus lower bound

deflections. After some algebra, the nonlinear ordinary

differential equation, incorporated the effect of viscous

damping 6, is:

A(t),tt + (26)A(t),t + A(t) + b* A(t) 3 = 0

where b* = (3/8)(i-u 2) and u is Poisson's ratio. Note that

damping was not considered in Wilkinson's equation and his

equation is based on quasi-static mechanics of failure as

opposed to the present dynamic equations valid for extremely

short duration. The inclusion of dynamic effects would give
much more realistic results.

Further, the radial strain is found to be,

_r(at r=0, at outer surface) =

(h/_) 2 A(t) (1/2){i + (1/4) (l-u)A(t) }

where is the standard deviation of the spray, the first term

is the bending strain and the second term is the stretching
strain.
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FIGURE 1

amplitude versus maximum strain of main wall
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Figure 2

Amplitude versus ballistic limit velocity
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Figure 3 amplitude versus initial velocity
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